
PLANE TURBULENT COUETTE FLOW
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The problem on plane turbulent Couette flow for an incompressible liquid has been solved based on the an-
isotropic-turbulence model.

Let an incompressible Newtonian liquid located between two parallel planes be in the state of stationary tur-
bulent flow due to the relative motion of the planes. Let the plane y = 0 be immobile and the plane y = 2h move
with a constant velocity U. The coordinate system is as follows: the x axis is in the direction of motion and the y axis
is perpendicular to the planes (Fig. 1). Within the framework of the model of [1], the region between the planes is
considered to be consisting of two layers of wall anisotropic turbulence the anisotropy in which is created by stream-
wise-extended Λ vortices [2] and the intermediate layer of isotropic turbulence. The boundaries of the wall turbulence
at the planes are y = y1 and y = y2 (y1 < y2). Below we consider flow only in the wall regions 0 ≤ y ≤ y1 and
y2 ≤ y ≤ 2h.

Under the assumption that the liquid is incompressible and the flow is isothermal stationary and plane and
with neglect of the mass forces, we seek the velocity ui, the unit vector reference point ni, and the pressure p in the
form

ux = u (y) ,   uy = uz = 0 ,   nx = cos θ (y) ,   ny = sin θ (y) ,   nz = 0 ,   p = p (y) . (1)

The continuity equation is satisfied identically, and the equations of motion and state can be written as

d (σxy + τxy)
dy

 = 0 ,   
d (− p + σyy + τyy)

dy
 = 0 ; (2)

dβxy

dy
 + gx = 0 ,   

dβyy

dy
 + gy = 0 ; (3)

σxy = σyy = 0 ; (4)

τxy = 

µ1 sin

2
 θ cos

2
 θ + 

1
2

 µ4



 u′ ,   τyy = µ1 sin

3
 θ cos θu′ ; (5)

βxy = αy cos θ − k22 sin θ cos
2
 θθ′ ,   βyy = αy sin θ − k22 sin

2
 θ cos θθ′ ; (6)

gx = γ cos θ + αy sin θθ′ ,   gy = γ sin θ − αy cos θθ′ + k22 sin θθ′
2

 . (7)

The quantities αy, γ, µ1, µ4, and k22 in formulas (5)–(7) are considered to be constant.
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The second equation of (2) determines the pressure distribution over the cross section of the flow in the wall
regions

p (y) = 




p (0) + τyy (y) − τyy (0) ,
p (2h) + τyy (y) − τyy (2h) ,

   
0 ≤ y ≤ y1 ;

y2 ≤ y ≤ 2h . (8)

The first equation of (2) simultaneously with the first equalities of (4) and (5) leads to the relation




µ1 sin

2
 θ cos

2
 θ + 

µ4

2




 u′ = % τw , (9)

the (+) and (–) signs refer to the regions adjacent to the lower and upper planes respectively.
The substitution of expressions (6) and (7) into (3) leads to equations which coincide when γ = 0 and yield

the equation for determination of the angle θ(y):

sin θ cos θθ′′  + (1 − 3 sin
2
 θ) θ′

2

 = 0 . (10)

Assuming the planes to be constant and disregarding the thickness of the laminar sublayer at the planes, we
specify the boundary conditions

u (0) = 0 ,   u (2h) = U ; (11)

sin θ (0) = 0 ,   sin θ (2h) = 0 . (12)

Equalities (12) reflect the fact that vortices are extended streamwise at a solid wall [2].
Solving Eq. (10) with boundary conditions (12), we obtain

cos θ = 










% (1 − 3by)1
 ⁄ 3 ,

& [1 − 3b (2h − y)]1 ⁄ 3 ,
     

0 ≤ y ≤ y1 ;

y2 ≤ y ≤ 2h .
(13)

The constant b is determined by the equality [1]

b
2
 = sin

2
 θ0 cos

4
 θ0θ0

′
2
 , (14)

where θ0 and θ0′  are the angle θ and its derivative at the upper boundary of the vortex layer adjacent to each plane.
In view of the symmetry the constant b is equal for both regions. The combination of signs (+, –) in formulas (13)
corresponds to θ = 0 on the immobile plane and θ = π on the moving plane, while the combination (–, +), conversely,
corresponds to θ = 0 on the moving plane and to θ = π on the immobile plane (Fig. 1).

Fig. 1. Diagram of flow: the lower plane is immobile, while the upper plane
moves with velocity U; y = y1 and y = y2; at each point of the curves, the
vector reference point is directed tangentially to them.

1252



Integration of Eq. (9) with account for the solution (13) and boundary conditions (11) yields the sought ve-
locity profiles:

u (y) = 










Φ (t) ,

U − Φ (t) ,
     

t = (1 − 3by)1
 ⁄ 3 ,

t = [1 − 3b (2h − y)]1 ⁄ 3 ,
     

0 ≤ y ≤ y1 ;

y2 ≤ y ≤ 2h ;
(15)
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 , (16)

α = 
µ4

2µ1
 ,   2q

2
 = 1 + √1 + 4α  ,   q > 0 ,   u∗  = √ τw

ρ
 ,   κ = 

2µ1b

ρu∗
 . (17)

Near the planes, for example, the plane y = 0, when 3by << 1, this solution yields the logarithmic law of the
wall

u
u∗

 = 
1
κ

 ln y+ + C ,   C = 
1
κ

 ln 
bν

(q − 1) u∗
 . (18)

The quantities κ and C that are usually considered as empirical constants are expressed here by the parameters of the
medium and the flow ρ, ν, µ1, b, q, and u∗ , which does not prevent them from remaining constant.

Figure 2 gives the experimental points [3] and the graphs of three velocity profiles in the region 0 ≤ y ≤ y1
which have been calculated from formulas (15)–(17) under these experimental conditions. The working fluid is air. The
density is ρ = 1.21 kg/m3 and the kinematic viscosity is ν = 1.486⋅10−5 m2/sec. The parameters that change in the ex-
periments and the design parameters of the model are given in Table 1. For y+ > 20 all the experimental points are

Fig. 2. Dimensionless velocity u ⁄ u∗  vs. dimensionless coordinate y+ = yu∗  ⁄ ν in
the region 0 ≤ y ≤ y1: 1) calculation from formulas (15)–(17); 2) the same, from
the formula u ⁄ u∗  = 2.95 ln y+ + 3.44; 3) the same, from the formula u ⁄ u∗  =
2.55 ln y+ + 5.2; points, experiment [3] (I, II, and III, see Table 1).

TABLE 1. Experimental Data [3] and Values of the Parameters Employed for Obtaining the Curves in Fig. 2

Experiment U, m/sec h, mm u∗ , m/sec b, 1/m µ1, kg/(m⋅sec) µ4, kg/(m⋅sec) q

I 12.84 22 0.293 3.56 0.017 3.81⋅10–6 1.000056

II 12.84 33 0.282 3.40 0.017 3.88⋅10–6 1.000056

III 17.08 33 0.363 3.52 0.021 3.78⋅10–6 1.000045
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located near curve 1, which represents the image of three difficult-to-differentiate curves (15)–(17) calculated with al-
lowance for the data for experiments I–III. Curve 2 represents the graph of the function (18) with average values of
κ = 0.339 and C = 3.44. Clearly, this curve is similar to the calculated curves 1 and it better approximates the points
than the function (18) with constants κ = 0.39 and C = 5.2 from [3] (curve 3).

From the considered solution it is clear that the anisotropic-turbulence model used enables one to easily de-
scribe wall turbulent flow, employing only physically clear parameters of the moving medium and the boundary con-
ditions. Some of the known empirical constants can be expressed by the parameters of the model and the flow.

NOTATION

b, integration constant determined by formula (14), 1/m; C, constant in formula (18); gi, density of the inter-
nal generalized force, kg/(m⋅sec2); h, half the distance between parallel planes, m; k22, determining constant of the
model, kg⋅m/sec2; n and ni, unit vector reference point and its projections onto the x, y, and z axes; p, pressure, Pa;
q, constant determined by the second formula of (17); u, longitudinal local velocity, m/sec; U, velocity of the moving
plate, m/sec; u and ui, vector of the local velocity of the liquid and its projections onto the x, y, and z axes, m/sec;
u∗ , dynamic velocity, m/sec; x, y, z, Cartesian coordinates; y1 and y2; coordinates determining the boundaries of the
wall layers at the immobile and moving planes; y+ = (u∗ y)/ν, dimensionless coordinate; α, constant determined by the
first formula of (17); αy, projection of the arbitrary vector function αi onto the y axis, kg/sec2; βij, generalized
stresses, kg/sec2; γ, arbitrary function involved in Eq. (17), kg/(m⋅sec2); θ, angle of inclination of the vector reference
point to the x axis; κ, von Ka′ rma′n constant; µ1 and µ4, determining constants of the model, kg/(m⋅sec); ν, kinematic
viscosity, m2/sec; ρ, density, kg/m3; σij, stresses caused by the presence of the structure in the medium, Pa; τij, vis-
cous stresses, Pa; τw, modulus of tangential stress on the wall, Pa. Superscripts and subscripts: (′), derivative with re-
spect to the coordinate y; w, wall.
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